COLLOQUIUM MATHEMATICUM

VOL. LIV

FASC. 1

EXPONENTIAL MAPPING FOR LIE GROUPOIDS. APPLICATIONS

BY

JAN KUBARSKI (ŁÓDŹ)

0. Introduction. Let M be a manifold with a covariant derivative. The parallel displacement along any piecewise differentiable curve $\gamma: [0, 1] \rightarrow M$ defines some isomorphism of the fibre $E_{|\gamma(0)}$ onto the fibre $E_{|\gamma(1)}$. Thus it is appropriate to consider an object consisting of all linear isomorphisms of a fibre onto a fibre. The object has a natural structure of the so-called *Lie groupoid*. The above idea of calling these objects into existence comes from Ehresmann [3]. It turned out later that many problems from differential geometry of higher order are defined, in a natural manner, by means of a Lie groupoid. This gave rise to developing many theories concerning these objects, including the general theory (see, e.g., [1], [2], [6], [8]–[17]). In papers [4] and [5] the author made a uniform approach to the abovementioned theory. This paper is their continuation.

1. Inducing Lie subgroupoid by Lie subalgebroid.

DEFINITION 1.1. Let $A = (A, [[,]], \gamma)$ and $A' = (A', [[,]]', \gamma')$ be Lie algebroids (briefly, L.a.'s) ([4], [12]) over any manifold M. We say that A' is a Lie subalgebroid (briefly, L.suba.) of A if

(a) A' is a linear subbundle of A,

(b) the inclusion i: $A' \subseteq A$ gives a homomorphism of the L.a. (see [4]).

(1.1) If $(A, [\![,]\!], \gamma)$ is an L.a. and A' is a linear subbundle of A, then on A there exists a structure of an L.suba. of A• iff

(a) $\gamma | A': A' \to TM$ is an epimorphism,

(b) $[\sigma, \sigma'] \in C^{\infty}(A')$ for $\sigma, \sigma' \in C^{\infty}(A')$.

(1.2) If a Lie groupoid (briefly, L.g.) Φ' is a Lie subgroupoid (briefly, L.subg.) of some Φ and i: $\Phi' \hookrightarrow \Phi$ is the inclusion, then $\tilde{i}_*: A' \to A$ is a monomorphism of their L.a.'s.

Therefore, one may identify the L.a. of the L.subg. Φ' with an L.suba. of A.

THEOREM 1.1. Let $\boldsymbol{\Phi} = (\boldsymbol{\Phi}, (\alpha, \beta), M, \cdot)$ be an L.g. and let

 $A = (i^* (T^{\alpha} \Phi), [\![,]\!], \tilde{\beta}_*)$

be its L.a. ([4], [12]). Then for every L.suba. A' of A there exists exactly one connected L.subg. of Φ with algebroid equal to A'.

Proof. We take an arbitrary point $x \in M$ and the principal fibre bundle Φ_x (see [4] and [15]). We define a distribution B on the manifold Φ_x by the formula

 $B_h = (\Phi_h)_{*l_{\beta h}} [A'_{|\beta h}] \quad \text{for } h \in \Phi_x.$

It is a smooth involutive distribution. Let C be a connected maximal integral manifold of B passing through l_x .

(a) $\beta | C: C \to M$ is a surmersion.

Since $\beta | C$ is coregular, it remains to show that the mapping is "onto". Supposing that $\beta | C$ is not "onto", let $y \in M \setminus \beta [C]$ be any point from the boundary of the set $\beta [C]$ and let $x \xrightarrow{z_*} y$ be an element of Φ_x with target at y. Consider a connected maximal integral D of the distribution B passing through z. Then for every element $g \in \Phi_{(x,x)}$ the manifold $D_g = R_g[D]$ is also a connected maximal integral of B and it passes through $z \cdot g$ and $\beta [D] = \beta [D_g]$. Let us take a set

$$\Omega = \beta^{-1} \left[\beta \left[D \right] \right] \cap \Phi_x$$

Then

$$\Omega = \bigcup_{g \in \Phi_{(x,x)}} D_g.$$

Since the sets $\beta[C]$ and $\beta[D]$ are open, we have $\beta[C] \cap \beta[D] \neq \emptyset$. Let $x \stackrel{z'}{\to} t$ be an arbitrary element of C such that $t \in \beta[C] \cap \beta[D]$ and let $g \in \Phi_{(x,x)}$ be such that $z' \in D_g$. Hence $C = D_g$ and $y \in \beta[D_g] = \beta[C]$, which contradicts our assumption.

(b) $G = (\beta | C)^{-1} (\{x\})$ has a structure of a Lie subgroup of $\Phi_{(x,x)}$.

Since G is an embedding submanifold of C, it has a countable basis. The inclusion i: $G \subseteq \Phi_{(x,x)}$ is smooth. If $z \in C$ and $g \in \Phi_{(x,x)}$, then $z \cdot g \in C$ iff $g \in G$. The mapping

$$G \times G \hookrightarrow \Phi_{(x,x)} \times \Phi_{(x,x)} \to \Phi_x$$

is also smooth and its image lies in G. Since it lies also in C, and C is a connected integral of involutive distribution, $:: G \times G \to G$ is smooth. Analogously, we can prove the smoothness of $^{-1}: G \to G$. Hence G is a Lie subgroup of $\Phi_{(x,x)}$. Of course, the mapping

$$' = (C \times G \ni (z, g) \mapsto z \cdot g \in C)$$

is also smooth, and the system

$$\mathfrak{C} = (C, \beta | C, M, G, \cdot)$$

is a principal fibre bundle. Moreover, \mathfrak{C} is a subbundle of Φ_x , and the inclusion $C \hookrightarrow \Phi_x$ is an immersive homomorphism which defines an immer-

sion homomorphism of the L.g. $i: \mathfrak{C}\mathfrak{C}^{-1} \to \boldsymbol{\Phi}$ (see [3] and [7]). The image $\Psi = i[CC^{-1}]$ is a connected subgroupoid of $\boldsymbol{\Phi}$. On Ψ there exists exactly one differential structure of a manifold such that i is a diffeomorphism. We obtain an L.subg. Ψ of $\boldsymbol{\Phi}$, which is the desired object.

(c) The L.a. of Ψ is A'.

For $y \in M$ and $z \in \Psi$ with target at y we have

$$T_{l_y}(\Psi_y) = T_{l_y}(\Phi_z[C]) = (\Phi_z)_{*z^{-1}}[T_{z^{-1}}C] = (\Phi_z)_{*z^{-1}}[(\Phi_{z^{-1}})_{*l_y}[A'_{|y}]] = A'_{|y}.$$

(d) Uniqueness.

Let H be a connected L.subg. of Φ with algebroid equal to A'. Then H has the following properties:

(i) H_x is an integral of B passing through l_x ;

(ii) the connected component $(H_x)_0$ of l_x is an open submanifold of H_x ;

(iii) $\beta[(H_x)_0] = M, x \in M.$

To see (iii) observe that the set $W = \beta [(H_x)_0]$ is open in M. Assume that $W \neq M$ and let $y \in M$ be any point from the boundary of W. We take an arbitrary element $x \xrightarrow{h} y$ of H_x , a connected neighbourhood U of y, and a β -section $\sigma: U \to H_x$ such that $\sigma(y) = h$.

The mapping

$$\hat{\sigma} = (U \times H_{(x,x)} \ni (s, g) \mapsto \sigma(s) \cdot g \in (\beta | H_x)^{-1} [U])$$

is a diffeomorphism. Hence every connected component of $(\beta | H_x)^{-1}[U]$ is the image under $\hat{\sigma}$ of some connected component of $U \times H_{(x,x)}$. Every such component is equal to $U \times K$, where K is a coset in $H_{(x,x)}$ with respect to the connected component G of l_x in $H_{(x,x)}$. Since y lies in the boundary of W, we have $U \cap W \neq \emptyset$. Let $y_0 \in U \cap W$, $z \in (H_x)_0$, and $\beta(z) = y_0$. There exists a coset K_0 such that $z \in \hat{\sigma}[U \times K_0]$. Hence $\hat{\sigma}[U \times K_0] \subset (H_x)_0$ and, consequently, $y \in U \subset \beta[(H_x)_0] \subset W$, which gives a contradiction to $y \notin W$.

Properties (i) and (ii) imply that $(H_x)_0$ is an open submanifold of C. The set $\Omega = (H_x)_0 (H_x)_0^{-1}$ is open in Ψ and, by (iii), it contains all units. Hence Ω generates Ψ and H. The equality $\Psi = H$ follows from Theorem 1.3 in [5]. Thus the proof is complete.

2. Inducing a local homomorphism of Lie groupoids by a homomorphism of Lie algebroids. The problem of the existence of a local homomorphism of L.g.'s with a given homomorphism of L.a.'s was considered by means of other methods in [16].

Let $\Phi = (\Phi, (\alpha, \beta), M, \cdot)$ and $\Phi' = (\Phi', (\alpha', \beta'), M, \cdot')$ be any L.g.'s with the same monifold of units and with algebroids A and A'.

THEOREM 2.1. For every homomorphism $\gamma: A \to A'$ there exists a local homomorphism F from Φ into Φ' such that $\tilde{F}_* = \gamma$. Any two such local homomorphisms coincide in some neighbourhood of all units. If Φ is connected and there exists a global homomorphism F, then F is uniquely determined.

Remark. By the Whitney product $A \ge A'$ of the L.a.'s A and A' we mean the L.a. $(A \ge A', [\![,]\!]', \gamma'')$ in which

(1) $A \ge A' = \{(v, v') \in A \oplus A': \gamma(v) = \gamma'(v')\};$

(2) $\sigma, \tau \in C^{\infty}(A''), \sigma = (\mu, \mu')$ and $\tau = (\delta, \delta')$, where $\mu, \delta \in C^{\infty}(A)$ and $\mu', \delta' \in C^{\infty}(A')$ imply $[\![\sigma, \tau]\!] = ([\![\mu, \delta]\!], [\![\mu', \delta']\!]);$

(3) $\gamma''(v, v') = \gamma(v)$ for $(v, v') \in A \times A'$.

If $\Phi \ge \Phi'$ is a Whitney product of the L.g. (see [15]) and *i*: $M \to \Phi$, *i*': $M \to \Phi'$, *i*'': $M \to \Phi \ge \Phi'$ are natural embeddings, then

$$i = (i''(T^{\alpha}(\Phi \times \Phi')) \ni w \mapsto (\pi_{1*}w, \pi_{2*}w) \in i^*(T^{\alpha}\Phi) \times i'^*(T^{\alpha}\Phi')),$$

where $\pi_1: \Phi \times \Phi' \to \Phi$ and $\pi_2: \Phi \times \Phi' \to \Phi'$ are projections, is an isomorphism of the L.a.

Proof of Theorem 2.1. We take the subset c of the vector bundle

$$C = i^* (T^{\alpha} \Phi) \times i^{\prime *} (T^{\alpha} \Phi^{\prime})$$

consisting of all elements of the form $(v, \gamma(v))$, $v \in i^*(T^{\alpha} \Phi')$. The set c has a natural structure of an L.suba. of $A \leq A'$. Let \mathscr{E} be a connected L.subg. of $\Phi \leq \Phi'$ with algebroid c. We take a homomorphism π'_1 such that the following diagram is commutative:

If v is an α -vertical tangent vector at l_x , then $v \in i^* (T^{\alpha} \Phi)_{|x}$, $(v, \gamma(v)) \in i^* (T^{\alpha} \mathcal{E})$, and $\pi'_{1*} (v, \gamma(v)) = v$. Hence

$$(\pi'_1|\mathscr{E}_x)_{*l_x}: T_{l_x}(\mathscr{E}_x) \to T_{l_x}(\Phi_x), \quad x \in M,$$

is a linear isomorphism and such is also $(\pi'_1)_{*l_x}$. Consequently, the mapping π'_1 is a diffeomorphism in some neighbourhood of each unit. After complicated calculations we shall find a neighbourhood $\Theta \subset \Phi$ which contains all units and the mapping $H: \Theta \to \mathscr{E}$ which is a diffeomorphism onto an open set, being inverse to π'_1 . Then $F = \pi_2 \circ H$ is the desired local homomorphism.

We consider two local homomorphisms $F_1, F_2: \Phi | \Omega \to \Phi'$ such that $\tilde{F}_{1*} = \tilde{F}_{2*}$. For some open set $U_m \subset \mathbb{R}^m$ star-shaped with respect to $0 \in \mathbb{R}^m$ the mapping

$$\overline{\operatorname{Exp}}_{\phi}(x_0) = \left(U_m \ni (a^1, \ldots, a^m) \mapsto \left(\operatorname{Exp}_{\phi} \sum_{i=1}^m a^i \xi_i \right)(x_0) \in \Phi_{x_0} \right),$$

where cross-sections $\xi_1, \ldots, \xi_m \in C_0^{\infty}(i^*(T^{\alpha} \Phi))$ are a basis of $i^*(T^{\alpha} \Phi)$ over an open set $U \ni x_0$, is a diffeomorphism onto the open set $U_{l_{x_0}} \subset \Phi_{x_0}$ (see [4]). The inverse mapping is denoted by Log and called an *exponential coordinate*

system on Φ_{x_0} . If $(a^1, \ldots, a^m) \in U_m$, then there exists $\varepsilon > 0$ such that, for $|t| < 1 + \varepsilon$, we have

$$\left(\operatorname{Exp} t \sum_{i=1}^{m} a^{i} \xi_{i}\right)(x_{0}) \in U_{l_{x_{0}}}$$

and

$$F\left(\left(\operatorname{Exp}\sum_{i=1}^{m}a^{i}\,\xi_{i}\right)(x_{0})\right)=\operatorname{Exp}\left(\widetilde{F}_{*}\circ\left(\sum_{i=1}^{m}a^{i}\,\xi_{i}\right)\right)(x_{0})$$

(see [4]). Hence, for

$$j = \left(\boldsymbol{R}^m \ni (a^1, \ldots, a^m) \mapsto \sum_{i=1}^m a^i \, \xi_i \in C_0^\infty \left(i^* \left(T^{\alpha} \boldsymbol{\Phi} \right) \right) \right)$$

and for $g \in U_{l_{x_0}} \cap \Omega$, we obtain

$$F_1(g) = \left(\operatorname{Exp}\left(\tilde{F}_{1*} \circ j \left(\operatorname{Log}(g) \right) \right) \right) (x_0) = \left(\operatorname{Exp}\left(\tilde{F}_{2*} \circ j \left(\operatorname{Log}(g) \right) \right) \right) (x_0) = F_2(g).$$

Now, it is easy to see that F_1 and F_2 coincide in some neighbourhood containing all units.

Finally, we assume that $F_1, F_2: \Phi \to \Phi'$ are global homomorphisms such that $\tilde{F}_{1*} = \tilde{F}_{2*}$. Clearly, $F_1 | \Omega = F_2 | \Omega$ for some open set Ω containing all units. Since Ω generates Φ , an arbitrary point $z \in \Phi$ is equal to $z_1 \cdot \ldots \cdot z_n$ for some $n \in N, z_1, \ldots, z_n \in \Omega$. As a consequence we obtain

$$F_1(z) = F_1(z_1 \cdots z_n) = F_1(z_1) \cdots F_1(z_n) = F_2(z_1) \cdots F_2(z_n)$$

= $F_2(z_1 \cdots z_n) = F_2(z).$

COROLLARY. Two L.g.'s are locally isomorphic if and only if their L.a.'s are isomorphic.

3. Some characterization of subalgebroid. It is easy to see that if Ψ is an L.subg. of Φ (see [5]), then the set $C_0^{\infty}(i^*(T^*\Psi))$ coincides with the set of those $\xi \in C_0^{\infty}(i^*(T^*\Phi))$ for which the mapping

 $E = (M \times \mathbf{R} \ni (x, t) \mapsto (\operatorname{Exp} t\xi)(x) \in \Phi)$

has the values in Ψ and, while regarded as the mapping $E: M \times \mathbf{R} \to \Psi$, it is continuous.

COROLLARY. If two connected L.subg.'s Ψ_1 and Ψ_2 of Φ coincide as topological spaces, then they coincide as L.g.'s.

This corollary will be considerably strengthened by using the following THEOREM 3.1. Let Ψ be an L.subg. of Φ . Then the set $C_0^{\infty}(i^*(T^*\Psi))$ is equal to the set of those $\xi \in C_0^{\infty}(i^*(T^*\Phi))$ for which $(\operatorname{Exp} t\xi)(x) \in \Psi$ for $(x, t) \in M \times \mathbb{R}$.

Proof. Take any vector subbundle m of $i^*(T^{\alpha}\Phi)$ such that $i^*(T^{\alpha}\Phi) = i^*(T^{\alpha}\Psi) \oplus \mathfrak{m}$. Let $\xi_1, \ldots, \xi_n \in C_0^{\infty}(i^*(T^{\alpha}\Psi))$ and $\xi_{n+1}, \ldots, \xi_{n+m} \in C_0^{\infty}(\mathfrak{m})$ be

J. KUBARSKI

cross-sections which are bases of $i^*(T^{\alpha}\Psi)$ and m, respectively, over an open subset $U \ni x$. Then the system of cross-sections $\xi_1, \ldots, \xi_n, \xi_{n+1}, \ldots, \xi_{n+m}$ is a basis of $i^*(T^{\alpha}\Phi)$ over U. Let $\overline{\operatorname{Exp}}_{\psi}$ and $\overline{\operatorname{Exp}}_{\psi}$ be defined for the above crosssections. There exist neighbourhoods $U' \subset U$ of x, $U_m \subset \mathbb{R}^m$ of 0, and $U_n \subset \mathbb{R}^n$ of 0 such that the mapping λ : $U_m \times U_n \times U' \to \Phi$ defined by

$$\lambda(a, b, y) = \overline{\operatorname{Exp}}_{\phi}((a, 0), \beta \circ \operatorname{Exp}_{\phi}((0, b), y)) \cdot \operatorname{Exp}_{\phi}((0, b), y)$$

for $a \in U_m$, $b \in U_n$ and $y \in U'$ is a diffeomorphism onto its open image Θ (see [4]) and $\overline{\operatorname{Exp}}_{\Psi}$: $U_n \times U \to \Psi$ is also a diffeomorphism onto an open set Ω such that its topology is induced from Φ . Since the mapping

$$\gamma = (U_m \times U \ni (b, y) \mapsto \beta \circ \operatorname{Exp}_{\phi}((0, b), y) \in M)$$

is smooth and $\gamma(0, x) = x$, there exist some open neighbourhoods $U'_m \subset U_m$ of 0 and $U' \subset U$ of x such that $\gamma[U'_m \times U'] \subset U$. For $y \in U'$ we put

$$a_{v} = \{b \in U'_{m}; \operatorname{Exp}_{\phi}((0, b), y) \in \Psi\}$$
 and $\Theta' = \lambda [U_{n} \times U'_{m} \times U'].$

Hence

$$\Theta' \cap \Psi_{y} = \bigcup_{b \in \mathfrak{a}_{y}} \overline{\operatorname{Exp}}_{\phi} \left[U_{n} \times \{0\} \times \{\beta \circ \overline{\operatorname{Exp}}_{\phi} ((0, b), y)\} \right] \cdot \operatorname{Exp}_{\phi} ((0, b), y)$$

and the set

$$\overline{\operatorname{Exp}}_{\phi}\left[U_{n}\times\{0\}\times\{d\}\right]=\operatorname{Exp}_{\Psi}\left[U_{n}\times\{d\}\right]$$

is open in Ψ_d , where $d = \beta \circ \overline{\exp}_{\phi}((0, b), y)$. Consequently, the set

$$\operatorname{Exp}_{\bullet} \left[U_n \times \{0\} \times \{d\} \right] \cdot \operatorname{Exp}_{\bullet} \left((0, b), y \right)$$

is open in Ψ_y for $b \in a_y$, $y \in U'$. For different $b \in a_y$ these sets are disjoint, which follows from the injectivity of λ . The set a_y is then at most countable. We put

$$(\pi: \Theta'_{\nu} \to U'_{m}) = (\mathrm{pr}_{2} \circ \lambda_{\nu}^{-1}),$$

where Θ'_y denotes the topological space $\Phi_y | \Theta'_y$ (<u>A</u> denotes the set of points of the space A). Then π is continuous and

$$\pi\left(\operatorname{Exp}_{\phi}((a, 0), \beta \circ \operatorname{Exp}_{\phi}((0, b), y)) \cdot \operatorname{Exp}_{\phi}((0, b), y)\right) = b$$

for $(a, b) \in U_n \times U'_m$. Thus

$$\pi|\Theta'_{y} \cap \Psi_{y} \colon \Theta'_{y}|\Theta'_{y} \cap \Psi_{y} \to U'_{m}$$

is also continuous and $\pi [\underline{\Theta'_y} \cap \underline{\Psi_y}] \subset \mathfrak{a}_y$. Therefore, it induces the continuous mapping

$$\tilde{\pi}: \Theta_{v}' | \Theta_{v}' \cap \Psi_{v} \to \mathfrak{a}_{v}.$$

From the fact that every connected subset of a countable set in \mathbb{R}^n is one-point it follows that the image of the connected component of l_y in

$$\Theta'_{y}|\Theta'_{y} \cap \underline{\Psi}_{y} = \Phi_{y}|\underline{\Theta'_{y}} \cap \underline{\Psi}_{y}$$

under $\tilde{\pi}$ is one-point, of course 0. Since the set

$$\tilde{\pi}^{-1}[\{0\}] = \operatorname{Exp}_{\Psi}[U_n \times \{y\}]$$

is connected, it is a component of l_y in $\Phi_y | \Theta'_y \cap \Psi_y$.

We consider again the mapping E, an open neighbourhood $U'' \subset U$ of x, and $\varepsilon > 0$ such that $E[U'' \times I_{\varepsilon}] \subset \Theta'$. Since the mapping

$$E_{y} = (I_{\varepsilon} \ni t \mapsto E(y, t) \in \Phi_{y})$$

is continuous for $y \in U''$ and $E_y[I_{\varepsilon}] \subset \Theta' \cap \Psi_y$, we infer that

$$E_{\mathbf{y}}: I_{\varepsilon} \to \Phi_{\mathbf{y}} | \Theta_{\mathbf{y}}' \cap \Psi_{\mathbf{y}}$$

is also continuous. The set $E_y[I_{\varepsilon}]$ is connected and $E_y(0) = l_y$, so it is contained in the connected component of l_y in $\Phi_y|\underline{\Theta'_y} \cap \underline{\Psi_y}$, i.e., in $\overline{\operatorname{Exp}}_{\Psi}[U_n \times \{y\}]$. This proves that $E[U'' \times I_{\varepsilon}]$ is contained in $\overline{\operatorname{Exp}}_{\Psi}[U_n \times U'']$ and, consequently, in $\Omega \subset \Psi$. Therefore,

$$E \mid U'' \times I_{\varepsilon} \colon U'' \times I_{\varepsilon} \to \Psi$$

is continuous and, of course, smooth. Hence $E|U'' \times I_{\varepsilon}$ generates a crosssection of $i^*(T^{\alpha}\Psi)$ over U'' (see [4] and [6]), of course, $\xi|U''$. Since $x \in M$ is arbitrary, $\xi \in C_0^{\infty}(i^*(T^{\alpha}\Psi))$.

COROLLARY. If Ψ_1 and Ψ_2 are two connected L.subg.'s of Φ whose sets of points are equal, then Ψ_1 is equal to Ψ_2 as an L.g.

COROLLARY. Let K and H be L.subg.'s of Φ and let K be connected. If the set of points of K is contained in the same one of the H, then K is an L.subg. of H.

4. Images and pre-images.

THEOREM 4.1. Let $F: \Phi \to \Psi$ be an L.g. homomorphism and let $\mathfrak{k} = \operatorname{im} \overline{F}_*$ be a vector subbundle of $\mathfrak{i}^*(T^{\alpha}\Psi)$. Then

(a) I determines a subalgebroid of $i^*(T^{\alpha} \Psi)$, say k;

(b) on im F there exists a structure of the L.subg. of Ψ with algebroid k.

Proof. It is easy to find that f determines an L.suba. Let H be a connected L.subg. of Ψ with algebroid k. For $x \in M$ and $\xi \in C_0^{\infty}(i^*(T^*\Phi))$, the elements $(\operatorname{Exp}_{\Phi}\xi)(x)$ generate Φ , so the elements

$$F((\operatorname{Exp}_{\phi}\xi)(x)) = \operatorname{Exp}_{\Psi}(\widetilde{F}_{*}\circ\xi)(x)$$

generate im F. Hence im F is generated by $(Exp_{\psi}\eta)(x)$ for $x \in M$ and

 $\eta \in C_0^{\infty}(\mathfrak{h})$. Since these elements generate also H, the equality $\underline{H} = \operatorname{im} F$ holds. This completes the proof.

Let $F: \Phi \to \Psi$ be an L.g. homomorphism. Let us take an L.subg. $\Psi' \subset \Psi$ having the topology induced from Ψ . Put $H_1 = F^{-1}[\Psi']$ and $\mathfrak{u} = \tilde{F}_*^{-1}[i^*(T^{\alpha} \Psi')]$. Assume that \mathfrak{u} is a vector subbundle of $i^*(T^{\alpha} \Phi)$; then \mathfrak{u} determines an L.suba. of $i^*(T^{\alpha} \Phi)$, say \mathfrak{u} .

THEOREM 4.2. Let H be a connected L.subg. of Φ with algebroid u. Then on H_1 there exists a structure of L.subg. of Φ , say H_1 , with topology induced from Φ and such that H is an open L.subg. of H_1 with topology induced from H_1 .

Proof. It is enough to prove that

(1) $H \subset H_1$,

(2) the topology of H is induced from H_1 ,

(3) H is open in H_1 .

- To verify (2) it suffices to prove (1), (3) and to see that
- (4) H is closed in H_1 .

(1) For $\xi \in C_0^{\infty}(\mathfrak{u})$ we have $\tilde{F}_* \circ \xi \in C_0^{\infty}(i^*(T^{\alpha} \Psi'))$ and

$$F((\operatorname{Exp}\xi)(x)) = (\operatorname{Exp}(\overline{F}_*\circ\xi))(x) \in \Psi,$$

whence $(\operatorname{Exp} \xi)(x) \in H_1$. Since the elements of the form $(\operatorname{Exp} \xi)(x)$ generate H (see [4]), we get $H \subset H_1$.

(3) Take an arbitrary point $x_0 \in M$ and some cross-sections

$$\xi_1, \ldots, \xi_s \in C_0^\infty(\mathfrak{u}), \quad \xi_1, \ldots, \xi_s, \xi_{s+1}, \ldots, \xi_k \in C_0^\infty(i^*(T^{\alpha} \Phi)),$$

 $\eta_1, \ldots, \eta_m \in C_0^\infty (i^* (T^\alpha \Psi')), \quad \eta_1, \ldots, \eta_m, \eta_{m+1}, \ldots, \eta_r \in C_0^\infty (i^* (T^\alpha \Psi))$

such that over an open set $U \ni x_0$ they are bases of the corresponding vector bundles. Let \overline{Exp}_{ϕ} and \overline{Exp}_{ψ} be defined for these cross-sections. Choose neighbourhoods $U_s \subset \mathbb{R}^s$ of 0, $U_{k-s} \subset \mathbb{R}^{k-s}$ of 0, $U_m \subset \mathbb{R}^m$ of 0, $U_{r-m} \subset \mathbb{R}^{r-m}$ of 0, and $U' \subset U$ of x_0 such that the mappings

$$\operatorname{Exp}_{\phi}: U_s \times U_{k-s} \times U' \to \Phi$$
 and $\operatorname{Exp}_{\Psi}: U_m \times U_{r-m} \times U' \to \Psi$

are diffeomorphisms onto their open images, and

$$\operatorname{Exp}_{\phi}[U_{s} \times \{0\} \times U'] = \operatorname{Exp}_{\phi}[U_{s} \times U_{k-s} \times U'] \cap H,$$

 $\operatorname{Exp}_{\Psi}[U_m \times \{0\} \times U'] = \operatorname{Exp}_{\Psi}[U_m \times U_{r-m} \times U'] \cap \Psi'.$

We put

$$i = (U_s \times U_{k-s} \times U' \ni (a, b, x)) \mapsto \sum_{i=1}^s a^i \xi_i(x) + \sum_{i=1}^{k-s} b^i \xi_{s+i}(x) \in \Phi),$$

$$j = (U_m \times U_{r-m} \times U' \ni (c, d, x)) \mapsto \sum_{i=1}^m c^i \eta_i(x) + \sum_{i=1}^{r-m} d^i \eta_{m+i}(x) \in \Psi).$$

Let $U'_s \subset U_s$ and $U'_{k-s} \subset U_{k-s}$ be neighbourhoods of 0 and let $U'' \subset U$ be a neighbourhood of x_0 . Suppose

$$\tilde{F}_*[i[U'_s \times U_{k-s} \times U'']] \subset j[U_m \times U_{r-m} \times U'].$$

Putting $\Omega = \overline{\operatorname{Exp}}_{\phi}[U'_{s} \times U'_{k-s} \times U'']$, we obtain an open subset of Φ containing $l_{x_{0}}$, and $H_{1} \cap \Omega = H$. Indeed, for $z \in H_{1} \cap \Omega$ we have $F(z) \in \Psi'$, and $z = \overline{\operatorname{Exp}}_{\phi}((a_{1}, a_{2}), x)$ for $a_{1} \in U'_{s}, a_{2} \in U'_{k-s}$. If

$$((b_1, b_2), x) = j^{-1} (\tilde{F}_*(i(a_1, a_2), x)),$$

then $b_1 \in U_m$, $b_2 \in U_{r-m}$ and

$$F(z) = \overline{\operatorname{Exp}}_{\Psi}((b_1, b_2), x) \in \operatorname{Exp}_{\Psi}[U_m \times U_{r-m} \times U'] \cap \Psi'$$
$$= \overline{\operatorname{Exp}}_{\Psi}[U_m \times \{0\}]$$

Hence $b_2 = 0$ and $F(z) = \operatorname{Exp}_{\Psi}(((b_1, 0), x))$, $(b_1, x) \in U_m \times U'$, and $i(b_1, x) \in i^*(T^* \Psi')$, which means that

$$\widetilde{F}_{*}(i((a_1, a_2), x)) \in i^*(T^{\alpha} \Psi').$$

Therefore $i((a_1, a_2), x) \in U$, whence $a_2 = 0$. Finally,

$$z = \operatorname{Exp}_{\phi}((a_1, a_2), x) = \operatorname{Exp}_{\phi}((a_1, 0), x) \in H.$$

We now take $z \in H$ such that $\beta(z) = x_0$. Let $\sigma: U' \to H$ be an arbitrary α -admissible β -section such that $\sigma(x_0) = z$. Put $W = \alpha [\sigma[U']]$ and $f = \alpha \circ \sigma$. Let

$$L = (\alpha^{-1} [U'] \ni g \mapsto g \cdot \sigma_{\alpha(g)} \in \alpha^{-1} [W])$$

be a right translation in $\boldsymbol{\Phi}$ by σ . Then $L[\Omega]$ is an open set of z. It is easy to see that

$$L[\Omega] \cap H_1 \subset H.$$

Since x_0 is an arbitrary point, H is open in H_1 .

(4) We prove first that H_x is closed in $(H_1)_x$ for an arbitrary $x \in M$. Let $x \xrightarrow{z} y$ be an element of $H_1 \setminus H$. Then $\Phi_z: (H_1)_y \to (H_1)_x$ is a homeomorphism and $\Phi_z[H_y]$ is open in the space $(H_1)_x$ disjoint with H_x and containing z. Hence $(H_1)_x \setminus H_x$ is open in $(H_1)_x$, and so H_1 is closed in $(H_1)_x$.

We now take a sequence $z_n \to z_0$ as $n \to \infty$, $z_n \in H$. Let $\alpha(z_n) = x_n$ and $\beta(z_n) = y_n$. Then $x_n \to x_0$ and $y_n \to y_0$ as $n \to \infty$, where $\alpha(z_0) = x_0$ and $\beta(z_0) = y_0$. For an arbitrary sequence $t_n \in H$ such that $\alpha(t_n) = x_0$, $\beta(t_n) = x_n$, and $t_n \to l_{x_0}$, we have $z_n \cdot t_n \to z_0 \cdot l_{x_0} = z_0$ as $n \to \infty$. Since $z_n \cdot t_n \in H_{x_0}$, we have $z_0 \in H_{x_0}$.

 $\times U'$].

J. KUBARSKI

REFERENCES

- R. Brown, G. Danesh-Naruie and J. P. L. Hardy, Topological groupoids: II. Covering morphisms and G-spaces, Math. Nachr. 74 (1976), pp. 143-156.
- [2] R. Brown and J. P. L. Hardy, Topological groupoids: I. Universal constructions, ibidem 71 (1976), pp. 273-286.
- [3] C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés) (Bruxelles 1950), Liège 1951.
- [4] J. Kubarski, Exponential mapping for Lie groupoids, Colloq. Math. 47 (1983), pp. 267–282.
- [5] Topological Lie subgroupoid, Demonstratio Math. 13 (3) (1980), pp. 585-596.
- [6] A. Kumpera, An Introduction to Lie Groupoids, Nucleo de Estudos e Pesquisas Cientificas, Rio de Janeiro 1971.
- [7] P. Libermann, Sur les prolongements des fibrés principaux et des groupoïdes différentiables banachiques, Séminaire de Mathématiques Supérieures No. 42 (été 1969), Analyse globale, Les Presses de l'Université de Montréal, 1971.
- [8] Y. Matsuhima, Pseudogroupes de Lie transitifs, Séminaire Bourbaki, Mai 1955.
- [9] E. Pourreza, Fibrés à groupoïde structural local, Thèse, Université Paul Sabatier de Toulouse, 1972.
- [10] J. Pradines, Théorie de Lie pour les groupoides différentiables, I. Relations entre propriétés locales et globales, C. R. Acad. Sci. Paris 263 (1966), pp. 907–910.
- [11] Théorie de Lie pour les groupoïdes différentiables, II. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, ibidem 264 (1967), pp. 245–248.
- [12] Théorie de Lie pour les groupoïdes différentiables, Atti del Convegno Internazionale di Geometria Differenziale, Bologna, 28–30 IX 1967.
- [13] Géométrie différentielle au-dessus, d'un groupoïde, C. R. Acad. Sci. Paris 266 (1968), pp. 1194–1196.
- [14] Troisième théorème de Lie pour les groupoides différentiables, ibidem 267 (1968), pp. 21– 23.
- [15] N. V. Que, Du prolongement des espaces fibrés et des structures infinitésimales, Ann. Inst. Fourier (Grenoble) 17 (1967), pp. 157–223.
- [16] Sur l'espace de prolongement différentiable, J. Differential Geometry 2 (1968), pp. 33-40.
- [17] A. K. Seda, Haar measures for groupoids, Proc. Roy. Irish Acad. 76A (1976), pp. 25-36.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF ŁÓDŻ

> Reçu par la Rédaction le 5.1.1979; en version modifiée le 15.8.1982