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EXPONENTIAL MAPPING FOR LIE GROUPOIDS.
APPLICATIONS

BY

JAN K U B A R S K I (LODZ)

0. Introduction. Let M be a manifold with a covariant derivative. The
parallel displacement along any piecewise differentiable curve y: [0, 1] -» M
defines some isomorphism of the fibre £|y(0) onto the fibre £|V(i>. Thus it is
appropriate to consider an object consisting of all linear isomorphisms of a
fibre onto a fibre. The object has a natural structure of the so-called Lie
groupoid. The above idea of calling these objects into existence comes from
Ehresmann [3]. It turned out later that many problems from differential
geometry of higher order are defined, in a natural manner, by means of a Lie
groupoid. This gave rise to developing many theories concerning these
objects, including the general theory (see, e.g., [1], [2], [6], [8]-[!?]). In
papers [4] and [5] the author made a uniform approach to the above-
mentioned theory. This paper is their continuation.

1. Inducing Lie subgroupoid by Lie subalgebroid.
DEFINITION 1.1. Let A = (A, [,J, y) and A' =(A', [,]', y') be Lie alge-

broids (briefly, L.a.'s) ([4], [12]) over any manifold M. We say that A' is a Lie
subalgebroid (briefly, L.suba.) of A if

(a) A' is a linear subbundle of A,
(b) the inclusion /: A1 c» A gives a homomorphism of the L.a. (see [4]).

(1.1) // (A, [,), 7) is an L.a. and A' is a linear subbundle of A, then on A
there exists a structure of an L.suba. of A' iff

(a) y\A'~. A' -» TM is an epimorphism,
(b) fff , <r']eCx(X') for ff, <r 'eC x04'» .

(1.2) // a Lie groupoid (briefly, L.g.) #' is a Lie subgroupoid (briefly,
L.subg.) of some 0 and i: 0' cz, <P is the inclusion, then i#: A' —> A is a
monomorphism of their L.a.'s.

Therefore, one may identify the L.a. of the L.subg. <P' with an L.suba.
of A.

THEOREM 1.1. Let 0 = (0, (a, /?), M, •) be an L.g. and let
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be its L.a. ([4], [12]). Then for every L.suba. A' of A there exists exactly one
connected L.subg. of 0 with algebroid equal to A'.

Proof. We take an arbitrary point x e M and the principal fibre
bundle <£x (see [4] and [15]). We define a distribution B on the manifold 0A

by the formula

It is a smooth involutive distribution. Let C be a connected maximal integral
manifold of B passing through lx.

(a) /f |C: C -> M is a surmersion.
Since ft\ is coregular, it remains to show that the mapping is "onto".

Supposing that p\ is not "onto", let yeM\ / f [C] be any point from the
boundary of the set /?[C] and let x -*» y be an element of <PX with target at v.
Consider a connected maximal integral D of the distribution B passing
through z. Then for every element ge4>(XtX] the manifold D9 = R<,[£>] is also
a connected maximal integral of B and it passes through z - g and /?[/>]
= ft [Dg~\ Let us take a set

Then

fl= U D..
S«*(x,*J

Since the sets 0[C] and /?[D] are open, we have 0[C] <^0[D] ^ 0- Let
x -^ r be an arbitrary element of C such that te£[C] n$[D] and let
0e#u,x) be such that /eDf l. Hence C = D9 and ye /?[£,] = )8[C], which
contradicts our assumption.

(b) G =Q3|C)~1({x}) has a structure of a Lie subgroup of <&(XfX)-
Since G is an embedding submanifold of C, it has a countable basis. The

inclusion i: G c, $(x^ is smooth. If zeC and ge<P(XtX}, then z - ^ e C iff 0eG.
The mapping

G x G ̂  <P(X,X} x <P(XtX} - 0X

is also smooth and its image lies in G. Since it lies also in C, and C is a
connected integral of involutive distribution, •: G x G - » G is smooth. Anal-
ogously, we can prove the smoothness of "*: G -* G. Hence G is a Lie
subgroup of 0(x,xl. Of course, the mapping

is also smooth, and the system

<£ = (C, 0|C, M, G,- ' )

is a principal fibre bundle. Moreover, (i is a subbundle of 0^, and the
inclusion C c> <px is an immersive homomorphism which defines an immer-
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sion homomorphism of the L.g. i: ££ ! -> <P (see [3] and [7]). The image V
= ([CC~ ]] is a connected subgroupoid of 0. On V there exists exactly one
differential structure of a manifold such that i is a diffeomorphism. We
obtain an L.subg. V of <£, which is the desired object.

(c) The L.a. of V is A'.
For yeM and z e V with target at y we have

(d) Uniqueness.
Let H be a connected L.subg. of <l> with algebroid equal to .4'. Then //

has the following properties:
(i) //j, is an integral of B passing through /x;

(ii) the connected component (Hx)0 of /^ is an open submanifold of Hx\) j8[(HJ0] = Af, xeM.

To see (iii) observe that the set W = /?[(// J0] is open in M. Assume that
W ^ M and let yeM be any point from the boundary of W. We take an
arbitrary element .x -*» y of Hx, a connected neighbourhood U of y, and a /?-
section <r: U —> Hx such that <r(y) = h.

The mapping

is a diffeomorphism. Hence every connected component of (P\Hx)~l \_U~\s
the image under a of some connected component of U xH(xx). Every such
component is equal to U xK, where K is a coset in H(XtX] with respect to the
connected component G of lx in H{XtX}. Since y lies in the boundary of W, we
have U n W =£ 0. Let y 0 et /n(y , re (//Jo, and /?(z) = y0. There exists a
coset K0 such that z e < r [ t / x K 0 ] . Hence a[U xX0] c (//x)0 and, conse-
quently, yell c /?[(//;e)o] c ̂  which gives a contradiction to y$W.

Properties (i) and (ii) imply that (Hx)0 is an open submanifold of C. The
set Q = (HX)O(HX)Q l is open in V and, by (iii), it contains all units. Hence Q
generates V and H. The equality V = H follows from Theorem 1.3 in [5].
Thus the proof is complete.

2. inducing a local homomorphism of Lie groupoids by a homomorphism
of Lie algebroids. The problem of the existence of a local homomorphism of
L.g.'s with a given homomorphism of L.a.'s was considered by means of
other methods in [16].

Let 0 = (*, (a, ft, M, •) and 0' = (<*>', (a', /?'), M, •') be any L.g/s with
the same monifold of units and with algebroids A and A'.

THEOREM 2.1. For every homomorphism y: A—> A' there exists a local
homomorphism F from 0 into 0' such that F+ = y. Any two such local
homomorphisms coincide in some neighbourhood of all units. If 0 is connected
and there exists a global homomorphism F, then F is uniquely determined.
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Remark . By the Whitney product Ax A' of the L.a.'s A and A' we mean
the L.a. (A xA', J,]", 7") in which

(1) AxA'= \(v,v')eA@A': y(i?) = /Ml;
(2) cr, TeC*(4"), <T = (M, J*') and T = (<5, (5'), where //, ^ eCx(/l} and

/i\) imply fa, r] = ([M, <5J, [/, 5'|);
(3) -;"(t\) - y(») for (r, r')e/l x/T.
If 0x0' is a Whitney product of the L.g. (see [15]) and i: M —> #,

/': M -» 0', /": M-^$x0 ' are natural embeddings, then

where Tr^ 0 x 0' -» 0 and 7i2: 0 x 0' -* 0' are projections, is an isomor-
phism of the L.a.

Proof of T h e o r e m 2.1. We take the subset c of the vector bundle

consisting of all elements of the form (r, y(r)), vei*(T*<P'). The set c has a
natural structure of an L.suba. of Ax A'. Let tf be a connected L.subg. of
0x0' with algebroid c. We take a homomorphism n\h that the
following diagram is commutative:

71 'i
t, - > 0

0X0'

If v is an a-vertical tangent vector at /x, then
(u, y(y))6i*(T a <5'), and it'i*(v, y(u)) = v. Hence

is a linear isomorphism and such is also (Tti),,,/ . Consequently, the mapping
n\s a diffeomorphism in some neighbourhood of each unit. After compli-
cated calculations we shall find a neighbourhood 0 c: 0 which contains all
units and the mapping H: & -» 6 which is a diffeomorphism onto an open
set, being inverse to n\. Then F = 7r2oH is the desired local homomorphism.

We consider two local homomorphisms F l s F2: 0|f2-»0' such that
^i* — ̂ 2*- F°r some open set Um c Rm star-shaped with respect to OeKm

the mapping

where cross-sections ^,, ..., ^eCJji^tT11^)) are a basis of i*(T"0) over an
open set UBXQ, is a diffeomorphism onto the open set U, c 0XQ (see [4]).

The inverse mapping is denoted by Log and called an exponential coordinate
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system on 0XQ. If (a1, ..., am)et/m , then there exists £ > 0 such that, for \t\ 1 +£, we have

and
m

F((Exp X ai^)
i = l 1 = 1

(see [4]). Hence, for
m

j = (IT 9(fl', . . . , a"1) ̂  £ a' & e CJ (i* ( T«*)))
1= 1

and for «et / i r\Q, we obtain
'*o

F! (g) = (Exp(F1% o/(LQgfe))))(xo) = (Exp(F2+ o/(Log(t/))))<.x0) = F2(0).

Now, it is easy to see that F! and F2 coincide in some neighbourhood
containing all units.

Finally, we assume that F { , F2: 0^0' are global homomorphisms
such that Fu = P2#- Clearly, F^Q = F2 Q for some open set Q containing
all units. Since Q generates 0, an arbitrary point re0 is equal to z} ' • • • ' ? „
for some neN, z\, . . . ,z nei2. As a consequence we obtain

COROLLARY. Tvvo L.^.'s are locally isomorphic if and only if their L.a.'s
are isomorphic.

3. Some characterization of subalgebroid. It is easy to see that if V is an
L.subg. of 0 (see [5]), then the set C^((*(T2 V)) coincides with the set of
those ceCo (/*(T*0)) for which the mapping

has the values in V and, while regarded as the mapping £: M x R ->• f, it is
continuous.

COROLLARY. // two connected L.subg.'s V: and V2 of 0 coincide as
topoloyical spaces, then they coincide as L.g.'s.

This corollary will be considerably strengthened by using the following
THEOREM 3.1. Let f be an L.subg. of 0. Then the set Cj?(i*(T"P)) is

equal to the set of those c, e CJ((*(Ta #)) for which (Expfc)We V for
(x, r ) eMx/? .

Proof. Take any vector subbundle m of /*(T*0) such that i*(T*0)
. Let C j , .... <E f leC?(/*(r* f )) and CM + , , . . . , cn + meC0"(m) be
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cross-sections which are bases of /*CP f) and nt, respectively, over an open
subset U 9x. Then the system of cross-sections g l s . . . , c;n, cn + 1 , . . . , cn + m is a
basis of i*(T*<P) over U. Let Exp,,, and Expr be defined for the above cross-
sections. There exist neighbourhoods V c: U of x, l/m c /?"' of 0, and
Un c K" of 0 such that the mapping A: Um x Un x U' — <P defined by

A(fl, ft, y) = Exp0((a, 0), /?oExp0((0, ft), y))-Exp0((0, ft), y)

for ae t/m, fte £/„ and ye V is a diffeomorphism onto its open image & (see
[4]) and Expv: t/n x U —- f is also a diffeomorphism onto an open set Q
such that its topology is induced from <P. Since the mapping

is smooth and y(0, x) = x, there exist some open neighbourhoods U'm <= UH

of 0 and U' <= U of x such that y\U'm x V\ U. For ye U' we put

(0,d),y)6ft] and 0' = /[[/„ x l/^ x L/'].

Hence

and the set

is open in fd, where d = )3oExp^((0, ft), y). Consequently, the set

is open in Vy for fteQj,,yeC/'. For different ftei^. these sets are disjoint,
which follows from the injectivity of /. The set c .̂ is then at most countable.
We put

(n: 0;-C/J =(pr2o/):1),

where Q'y denotes the topological space <Py €>'y (A_ denotes the set of points
of the space A). Then n is continuous and

((a, 0), j3oExp*((0, 6), y))-Exp0((0, 6), y)) = ft

for (a, b)EUnxU'm. Thus

is also continuous and TT [0J, n *Py] c a,,. Therefore, it induces the continuous
mapping
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From the fact that every connected subset of a countable set in R" is
one-point it follows that the image of the connected component of ly in

0; 0;n^, =</>y|0;n^,

under n is one-point, of course 0. Since the set

is connected, it is a component of ly in <Py Q'y n Vy .

We consider again the mapping E, an open neighbourhood V" ^ U of
x, and £ > 0 such that E[V" x/£] c 0'. Since the mapping

E)t =

is continuous for yet/" and Ey [/J c 0' n Vy, we infer that

is also continuous. The set Ey [7£] is connected and Ey(0) = /y, so it is
contained in the connected component of /y in <£>, <9y n fy , i.e., in

Expv,[(7n x !y|]. This proves that E[U" x/E] is contained in Expv[Un x L/"]
and, consequently, in Q <= V. Therefore,

£ L/ "X/C : [/"x/e-* f

is continuous and, of course, smooth. Hence E\U"xI£ generates a cross-
section of /*(T a f ) over (7" (see [4] and [6]), of course, £\U". Since xeM is
arbitrary, {eC?(i*(r"«P)).

COROLLARY. // *?i and f2 are two connected L.subg.'s of 0 whose sets
of points are equal, then Vt is equal to V2 as an L.g.

COROLLARY. Let K and H be L.subg*s of <P and let K be connected.
If the set of points of K is contained in the same one of the //, then K is
an L.subg. of H.

4. Images and pre-images.
THEOREM 4.1. Let F: 0 -* V be an L.g. homomorphism and let f = imF#

he a vector subbundle of /*(TaV /). Then
(a) f determines a subalgebroid of i*(T**f), say k\) on imF there exists a structure of the L.subg. of V with algebroid k.

Proof . It is easy to find that f determines an L.suba. Let H be
a connected L.subg. of f with algebroid k. For xeAf and {eCJ(/*(Ta <£»)),
the elements (Exp0{)(x) generate 0, so the elements

generate im F. Hence im F is generated by (Expr rj) (x) for xeM and
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i /6C£'(f) . Since these elements generate also H, the equality H_ = imF holds.
This completes the proof.

Let F: 0 -> V be an L.g. homomorphism. Let us take an L.subg. V c
V having the topology induced from *F. Put //t = F"1 [f'] and u
= ^* * P*(r" V")]. Assume that u is a vector subbundle of /*(r"#); then u
determines an L.suba. of /*Cra#), say M.

THEOREM 4.2. />ef H be a connected L.subg. of <& with algebroid u.
Then on H} there exists a structure of L.subg. of 0, say H t , with topology-
induced from 0 and such that H is an open L.subg. of Hl with topology
induced from H{.

Proof. It is enough to prove that

{I)* <=/*! ,

(2) the topology of H is induced from //,,
(3) H is open in Hv.
To verify (2) it suffices to prove (1), (3) and to see that
(4) H is closed in H ^ .

(1) For c e C J O O we have F+ oceCJ(/*(T V)) and

F((Exp{)(x)) = (Exp(F, 0€))(x)e V,

whence (Exp^)( .x)e / / j . Since the elements of the form (Expc)(x) generate H
(see [4]), we get H c / / I P

(3) Take an arbitrary point x 0eM and some cross-sections

such that over an open set t /ax0 they are bases of the corresponding vector
bundles. Let Exp^ and Exp,,, be defined for these cross-sections. Choose
neighbourhoods Us c R* of 0, t/ f c_ s c I? s of 0, Um c Rm of 0, t/ r_m c IT'"1

of 0, and U' c: U of x0 such that the mappings

C / s x U , _ s x ( 7 ' - 0 and

are diffeomorphisms onto their open images, and

Expy [t/M x J O J x I/'] =
We put

"•**r'.' 1=1
i vi m ; r-m -r ItttfJiiy^
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Let U's c Us and U'k-s c= Uk_s be neighbourhoods of 0 and let V" a U be
a neighbourhood of x0. Suppose

Putting Q = Exp0 [l/s x C/i-s x £/"], we obtain an open subset of 0
containing /x , and Hlr^Q = H. Indeed, for z e / f j nfi we have F(z)e *f ',

and z = Exp 0 ( a t , a2), -x for «i e t/i» ^ef/i-,. If

then bleUm, b2eUr-m and

F(-) = Ex v (C>n i>2), -v)e Expv[UM x U,_M x U'] n

Hence b2 = 0 and F(.-) = Exp^ ( ( ( f t t . 0), .v)). (b^ . x )e t / m xU ' , and
i(/>i, .x)6i*(73(|f'). which means that

Therefore /((«!, a2), x)e t/, whence a2 = 0. Finally,

= = Exp#((ar, «2), x) = Exp«((ai, 0), x)eH.

We now take ze // such that /?(z) = x0. Let o\ -> H be an arbitrary
a-admissible /5-section such that a(x0) = z. Put W= a[(j[(7']] and / = a OCT.
Let

be a right translation in 0 by <r. Then L[£2] is an open set of z. It is easy to
see that

Since x0 is an arbitrary point, H is open in H I .
(4) We prove first that Hx is closed in (H^ for an arbitrary xeM. Let

x-^>y be an element of Hl\H, Then 0Z: (//j), -^(Hj)x is a homeomorphism
and <£z [Hy] is open in the space (Hl)x disjoint with Hx and containing z.
Hence (//1)je\H,( is open in (HJ.,, and so HI is closed in (Hi)x,

We now take a sequence zn-»z0 as w -^ oo, zneH. Let a(zn) = xn and
^(^n) = yn- Then xn -> x0 and yn -^ y0 as n -* cc, where a(z0) = x0 and J3(z0)
= _y0 . For an arbitrary sequence tr te// such that a(fn) = x0, /?(fn) = xn, and
f»^^ 0 ' we have z« ' r» "* zo ' 'jco = zo as «-GO. Since zn-tneHXQ, we have
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