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0. Introduction. Let M be a manifold with a covariant derivative. The
parallel displacement along any piecewise differentiable curve y: [0, 1] - M
defines some isomorphism of the fibre E,,, onto the fibre E ,,. Thus it is
appropriate to consider an object consisting of all linear isomorphisms of a
fibre onto a fibre. The object has a natural structure of the so-called Lie
groupoid. The above idea of calling these objects into existence comes from
Ehresmann [3]. It turned out later that many problems from differential
geometry of higher order are defined, in a natural manner, by means of a Lie
groupoid. This gave rise to developing many theories concerning these
objects, including the general theory (see, eg., [1], [2], [6], [8]-[17]). In
papers [4] and [5] the author made a uniform approach to the above-
mentioned theory. This paper is their continuation.

1. Inducing Lie subgroupoid by Lie subalgebroid.

DeriNiTiOoN 1.1. Let A= (4, [,],7) and A" =(A4', [,],y) be Lie alge-
broids (briefly, L.a.’s) ([4], [12]) over any manifold M. We say that A" is a Lie
subalgebroid (briefly, L.suba.) of A if

(a) A’ is a linear subbundle of A,

(b) the inclusion i: A’ < A gives a homomorphism of the L.a. (see [4]).

(1.1) If (A, [ﬂ, ) is an L.a. and A’ is a linear subbundle of A, then on A
there exists a structure of an L.suba. of A-iff

(a) y|A": A'— TM is an epimorphism,

(b) o, a']eC*(A) for 6,0’ e C*(A)).

(1.2) If a Lie groupoid (briefly, Lg.) @' is a Lie subgroupoid (briefly,
L.subg.) of some @ and i: @' < @ is the inclusion, then i.,: A — A is a
monomorphism of their L.a’s.

Therefore, one may identify the L.a. of the L.subg. @’ with an L.suba.
of A.

TueoreM 1.1. Let @ = (@, (o, B), M, *) be an Lg. and let
A=(*(T2),[.]. 8.
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be its L.a. ([4], [12]). Then for every L.suba. A" of A there exists exactly one
connected L.subg. of @ with algebroid equal to A'.

Proof. We take an arbitrary point xe M and the principal fibre
bundlc @, (see [4] and [15]). We define a distribution B on the manifold @,
by the formula

By = (Puyiy, [A'pn]  for he d,.

It is a smooth involutive distribution. Let C be a connected maximal integral
manifold of B passing through I,.

(a) B|C: C— M is a surmersion.

Since B|C is coregular, it remains to show that the mapping is “onto™.
Supposing that B|C is not “onto”, let ye M\ B[C] be any point from the
boundary of the set S[C] and let x = y be an element of @, with target at y.
Consider a connected maximal integral D of the distribution B passing
through z. Then for every element ge @, ,, the manifold D, = R, [D] is also
a connected maximal integral of B and it passes through z'g and B[D]
= B[D,]. Let us take a set

Q= p"'[B[D]] N 2,.
Then
Q= U D,
: 9P (x,x)

Since the sets B[C] and B[D] are open, we have f[C]n B[D] # @. Let
x 2t be an arbitrary element of C such that te f[C]npB[D] and let
ge P be such that z’eD,. Hence C =D, and yef[D,] = B[C], which
contradicts our assumption.

(b) G =(B|C)" " ({x])) has a structure of a Lie subgroup of @D .

Since G is an embedding submanifold of C, it has a countable basis. The
inclusion i: G < @, ,, is smooth. If ze C and ge P, ), then z-geC iff geG.
The mapping

G xG S D ) X Diyoxy—* P

is also smooth and its image lies in G. Since it lies also in C, and C is a
connected integral of involutive distribution, :: G xG — G is smooth. Anal-
ogously, we can prove the smoothness of ~': G —G. Hence G is a Lie
subgroup of @ ,,. Of course, the mapping

' =(CxG3(z, g)—z-geC)
is also smooth, and the system
€=(C, BIC, M, G,")

is a principal fibre bundle. Moreover, € is a subbundle of @, and the
inclusion C < @, is an immersive homomorphism which defines an immer-
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sion homomorphism of the L.g. i: €€ ' — @ (see [3] and [7]). The image ¥
=i[CC~ '] is a connected subgroupoid of @. On ¥ there exists exactly one
differential structure of a manifold such that i is a difffomorphism. We
obtain an L.subg. ¥ of &, which is the desired object.

(c) The La. of ¥ is A'.

For ye M and ze ¥ with target at y we have

7;y(‘1’y) = ’I;y(d): [C]) = (d):)*z—l [T_.—l Cl= ((D:)*z_ 1 [(d):_ 1)*1y [Ally]] = 4j,.

(d) Uniqueness.

Let H be a connected L.subg. of @ with algebroid equal to 4'. Then H
has the following properties:

(i) H, is an integral of B passing through [:

(ii) the connected component (H,), of [, is an open submanifold of H,:

(i) B[(Hy)o] =M, xeM. :

To see (iii) observe that the set W = f[(H,),] is open in M. Assume that
W # M and let ye M be any point from the boundary of W. We take an
arbitrary element x % y of H,, a connected neighbourhood U of y, and a §-
section ¢: U — H, such that o(y) = h.

The mapping

é = (U XH(.\'.x) 9(S~ (I) HU(S)'.‘]‘:(/fIHx)_l [U])

is a diffeomorphism. Hence every connected component of (B|H,)~'[U] is
the image under ¢ of some connected component of U x H, ,,. Every such
component is equal to U x K, where K is a coset in H, ,, with respect to the
connected component G of [, in H, . Since y lies in the boundary of W, we
have UnW # Q. Let yoeU W, ze(H,)o, and f(z) = y,. There exists a
coset K, such that zed[U xK,]. Hence ¢[U xK,] =(H,), and, conse-
quently, ve U = B[(H,)o] = W, which gives a contradiction to y¢ W.

Properties (i) and (ii) imply that (H,), is an open submanifold of C. The
set Q =(H,)o(H,)o " is open in ¥ and, by (iii), it contains all units. Hence Q
generates ¥ and H. The equality ¥ = H follows from Theorem 1.3 in [5].
Thus the proof is complete.

2. Inducing a local homomorphism of Lie groupoids by a homomorphism
of Lie algebroids. The problem of the existence of a local homomorphism of
Lg’s with a given homomorphism of L.a’s was considered by means of
other methods in [16].

Let @ = (@, (x, f), M, ) and &' = (&', («, f), M, ') be any Lg’s with
the same monifold of units and with algebroids 4 and A’

THEOREM 2.1. For every homomorphism y: A — A’ there exists a local
homomorphism F from @ into @' such that F* =1v. Any two such local
homomorphisms coincide in some neighbourhood of all units. If @ is connected
and there exists a global homomorphism F, then F is uniquely determined.
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Remark. By the Whitney product A x A’ of the L.a’s A and A’ we mean
the La. (A x4’ [.]",7") in which

(1) AxA = |{(v,V)eA®A": y(v) = Y (v)};

(2) 0, teC*(A"), 0 =(u, }) and 1 =(d, d), where u, o0eC™(A4) and
W, 8eC*(A) imply [o, 1] = (T, 0], [ps 07):

(3) 3" (v, v') = 7(v) for (v, V)eA xA'.

If @ x®' is a Whitney product of the L.g. (see [15]) and i: M — &,
i M— @, i": M— ®x® are natural embeddings, then

j= (i”(T’(d’ XP))3W (T, W, Ty WE i*(T*P) xi™*(T* <D’)),

where m,: ® x® — @ and m,: @ xP' — &' are projections, is an isomor-
phism of the L.a.
Proof of Theorem 2.1. We take the subset ¢ of the vector bundle

C =i*(T*®) xi'™*(T* P

consisting of all elements of the form (v, 7(v), vei*(T*@'). The set ¢ has a
natural structure of an L.suba. of A4 x A" Let & be a connected L.subg. of
& x @ with algebroid ¢ We take a homomorphism =) such that the
following diagram is commutative:

L3
E — P
o
D xP

If v is an o-vertical tangent vector at [, then vei*(T*P),,
(v, y(v))ei*(T* &), and i, (v, 7(v) = v. Hence

(n’ll("'x)*lx: ’I;x(éix)_’ 'I;X(d)x)’ '\‘EM’

is a linear isomorphism and such is also (7)), Consequently, the mapping

n, is a diffeomorphism in some neighbourhood of each unit. After compli-
cated calculations we shall find a neighbourhood @ = @ which contains all
units and the mapping H: © — & which is a difffomorphism onto an open
set, being inverse to nj. Then F =n,0H is the desired local homomorphism.

We consider two local homomorphisms F,, F;: ®|Q — @' such that
F,, = F,,. For some open set U, = R™ star-shaped with respect to Oe R™
the mapping

Expy (xo) = (Un3(@, ..., @™ —(Expy Y, @' &)(x0)€ Px),

i=1

where cross-sections &, ..., Ene C§ (i* (T ®)) are a basis of i*(T™ @) over an
open set U3Xx,, Is a difffomorphism onto the open set U Mg c P, (see [4]).
The inverse mapping is denoted by Log and called an exponential coordinate
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system on @, . If (a', ..., a"eU,, then there exists ¢ > 0 such that, for [t|
< 1+¢, we have

m

(Expt Z d &) (xo)e UIXO

i=1

and

m

F((EXP Z a‘éi)(xo)) = EXP(F* O(Z aié,»))(.xo)
i=1 i=1
(see [4]). Hence, for
j=(R"3(', ..., a"— i a & e Cg (i* (T*9)))
i=1

and for ge U,I0 N Q, we obtain

F, (g) = (Exp(F,, 0j(Log(9)))(xo) = (Exp(F1, 0j(Log(9)))) (xo) = F2(9).

Now, it is easy to see that F, and F, coincide in some neighbourhood
containing all units.

Finally, we assume that F,, F,: @ — @' are global homomorphisms
such that F,, = F,,. Clearly, F,|Q = F,|Q for some open set © containing
all units. Since Q generates @, an arbitrary point ze® is equal to z,-... z,
for some neN, z,,.... z,e Q. As a consequence we obtain

F;(2) = Fylzyr ... 329 =Fq (Z1) 152 Enlz,) = FalZ3)" .- -2 Fa(23)
=F,(z,°...:2,) = F3(2).

CoROLLARY. Two L.g.s are locally isomorphic if and only if their L.a’s
are isomorphic.

3. Some characterization of subalgebroid. It is easy to see that if ¥ is an

Lsubg. of @ (see [5]), then the set Cg (i*(T*¥)) coincides with the set of
those e Cg (i* (T*®)) for which the mapping

E = (M xR>3(x, t) —(Expté)(x) e P)

has the values in ¥ and, while regarded as the mapping E: M xR — Y, it is
continuous.

CoROLLARY. If two connected L.subg’s ¥, and ¥, of @ coincide as
topological spaces, then they coincide as L.g.s.

This corollary will be considerably strengthened by using the following

THEOREM 3.1. Let W be an L.subg. of ®. Then the set C§(i*(T*P)) is
equal to the set of those £eCg (i*(T*®)) for which (Exptl)(x)e¥ for
(x, )e M xR.

Proof. Take any vector subbundle m of i*(7T*®) such that i*(7T* ®)
=i*(T*¥)@®m. Let &, ..., £,eCP(i*(T*¥P)) and &,4 4, ..., Enem€CG (M) be
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cross-sections which are bases of i*(T* ¥) and m, respectively, over an open
subset U 3x. Then the system of cross-sections &y, ..., Cus Cat 1 -os Sntm is a

basis of i* (T*®) over U. Let Ex—p,,, and EBW be defined for the above cross-
sections. There exist neighbourhoods U’ = U of x, U, = R"™ of 0, and
U, < R" of 0 such that the mapping A U, xU,xU — & defined by

&(aa b7 y) o E’aw((a, 0), ﬂOE—@‘p((O, b)a y))E;_pd’((O’ b)a y)

for acU,,, beU, and yeU'is a diffeomorphism onto its open image © (see
[4]) and Exp,: U,xU— ¥ is also a diffeomorphism onto an open set Q
such that its topology is induced from ¢@. Since the mapping

P = (Um x U 3(b, y) HﬂO—E_X_p‘p((Oa h)a y)EM)

is smooth and y(0, x) = x, there exist some open neighbourhoods U, = U,
of 0 and U’ < U of x such that y[U,, xU'] < U. For yeU’ we put

o, = lbe Ul Expy((0, b), y)e ] and O =A[U,xUpxU'].

Hence
0 ¥, = U Exp,[Usx (0} x (BoExp,((0, b), ¥)}]-Expo((0, b), y)
beay
and the set

Exp, [U, x {0} x {d}] = Expy [U, x {d}]
is open in ¥,, where d = B oExp,((0, b). ). Consequently, the set
Ex—p,,,[U,, x |0} x ',d:]'al_)¢((0. b), ¥)

is open in ¥, for bea, yeU'. For different bea, these sets are disjoint,
which follows from the injectivity of Z. The set a, is then at most countable.
We put

(n: @, — Up,) =(pry04, "),

where @) denotes the topological space ®,|@; (A denotes the set of points
of the space A). Then = is continuous and

7 (Exp, (@, 0), BOExp, (0, b), ¥)) Exp, (0. b), y)) = b
for (a, b)e U, x U,,. Thus
1@, n¥,: 8,|0, ¥, - U,
is also continuous and © [-é r\Z] = ay— The—r;fore, it induces the continuous
mapping
: 0,10, N ¥, —q,.
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From the fact that every connected subset of a countable set in R" is
one-point it follows that the image of the connected component of [, in

0,0, ", =,0,nY,

under 7 is one-point, of course 0. Since the set
#-'[10}] = Expy [U, x 1y}]
is connected, it is a component of [, in &|@; N¥,.

We consider again the mapping E, an open neighbourhood U” < U of
x, and ¢ > 0 such that E[U"” xI,] < @'. Since the mapping

E,=(I,2t—E(y,e®,)

is continuous for ye U” and E,[I,] = @ n¥,, we infer that
E: I,-®,8;nY;

is also continuous. The set E,[I,] is connected and E,(0) =1, so it is
contained in the connected component of [, in @[O0, ¥, ie, in

a).,, [U, x !y}]. This proves that E[U" x1,] is contained in E_xp.,, [U,xU"]
and, consequently, in Q < ¥. Therefore,

E|U" x1,: U" xI,— ¥

is continuous and, of course, smooth. Hence E|U"” xI, generates a Cross-
section of i* (T ¥) over U” (see [4] and [6]), of course, &|U". Since xe M is
arbitrary, £e Cg (i*(T* P)).

CoroLLARY. If W, and ¥, are two connected L.subg’s of @ whose sets
of points are equal, then ¥, is equal to ¥, as an Lg.

CoRrOLLARY. Let K and H be L.subg’s of @ and let K be connected.
If the set of points of K is contained in the same one of the H, then K is
an L.subg. of H.

4. Images and pre-images.

THEOREM 4.1. Let F: @ — ¥ be an L.g. homomorphism and let T =im f*
be a vector subbundle of i*(T*¥). Then

(a) T determines a subalgebroid of i*(T*¥), say k;

(b) on im F there exists a structure of the L.subg. of ¥ with algebroid k.

Proof. It is easy to find that f determines an L.suba. Let H be
a connected Lsubg. of ¥ with algebroid k. For xe M and ¢e CF (i*(T* @),
the elements (Exp, ¢)(x) generate @, so the elements

F ((Exp, &) (x)) = Expy (F, 0&)(x)

generate imF. Hence imF is generated by (Exp,n)(x) for xe M and
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ne C§ (1). Since these elements generate also H, the equality H = im F holds.
This completes the proof.

Let F: @ — ¥ be an L.g. homomorphism. Let us take an L.subg. ¥’ =
¥ having the topology induced from ¥. Put H, =F '[¥] and u
= F;’ [i*(T*¥')]. Assume that u is a vector subbundle of i*(7T*®); then u
determines an L.suba. of i*(T*®), say u.

TueoreM 4.2. Let H be a connected L.subg. of @ with algebroid u.
Then on H; there exists a structure of L.subg. of @, say H,, with topology
induced from ® and such that H is an open L.subg. of H, with topology
induced from H,.

Proof. It is enough to prove that

(1) H<=H,,

(2) the topology of H is induced from H,,

(3) H is open in H;.

To verify (2) it suffices to prove (1), (3) and to see that

(4) H is closed in H,.

(1) For ¢eCg (1) we have F*oéng“(i*(T’ ¥’)) and

F((Exp&)(x)) = (Exp(F, 09)(x) e ¥,

whence (Exp&)(x)e H, . Since the elements of the form (Exp¢)(x) generate H
(see [4]), we get H < H,.
(3) Take an arbitrary point xoe M and some cross-sections

Elseees GECTIY), " &y, M E, Edys s bt D))
Hys onns l']mGCg’(l*(WlP’)), His eovs Nms Hm+1s -0+ anCJ('*(TaW))

such that over an open set U 3Xx, they are bases of the corresponding vector

bundles. Let Exp, and Exp, be defined for these cross-sections. Choose
neighbourhoods U; = R* of 0, Uy, = R* *of 0, U,, = R" of O, U,_,, cR"™™
of 0, and U’ < U of x, such that the mappings

Expy: U xUy_yxU' —»® and Expy: UpxU,_,xU — ¥
are diffeomorphisms onto their open images, and
Exp,[U, x {0} x U] = Exp, [U, xU,_, x U] N H,

Expy [Uy x 10} x U] = Expy [Up xU,_n xU'TN ¥
We put
s k—s
i=(UyxUg-yxU'3(a, b, x)> Y d&(x)+ ) b'éi(x)ed)
i=1 i=1

J=UnxU,_yxU'3(c,d, x) > Y cni(x)+ Y, dnpii(x)eP).
j=1 i=1
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Let U, c U, and Uj_, = U;_, be neighbourhoods of 0 and let U” = U be
a neighbourhood of x,. Suppose

F[ilU;xUp-sxU"T] €j[Un*x U xU'].
Putting Q = Ex_p,,, [U.xUj_sxU"], we obtain an open subset of @
containing ., and H, N Q = H. Indeed, for ze H, nQ we have F(z)e V',

and z =Ex—p¢((a,, ay), x) for a; e Uy, a,eUj_,. If

((by, ba), x) =" (Fy(i(ay, az), X)),
then b,eU,,, b,eU,_, and
F(z) = Expy ((b1s b2), X)€EXpy [Upm x U, x U1 ¥’

= Expy [Un x (0} xU'].

Hence b, =0 and F(z)= E—x;;.,(((b,, 0), x)), (by, x)eU, xU’, and
i(b,, x)ei*(T* ¥'). which means that

F,(i((ay, ay), x)ei*(T* ¥').
Therefore i((ay, a,), x)e U, whence a, = 0. Finally,
z = Expy((ay, a3), X) = Exp, ((a;. 0), x)e H.

We now take ze H such that f(z) = x,. Let 6: U’ — H be an arbitrary
x-admissible f-section such that ¢(xo) = z. Put W=« [¢[U1]] and [ =ao00.
Let

L=(a'[U]2gg 0ymea ' [W])

be a right translation in @ by o. Then L[] is an open set of z. It is easy to
see that

L[Q]nH, c H.

Since x, is an arbitrary point, H is open in H,.

(4) We prove first that H, is closed in (H,), for an arbitrary xe M. Let
x % y be an element of H, \H. Then ®,: (H,),—(H,), is a homeomorphism
and @.[H,] is open in the space (H,), disjoint with H, and containing z.
Hence (H,),\H, is open in (H,),, and so H, is closed in (H,),.

We now take a sequence z,—z, as n— o0, z,€ H. Let a(z,) = x, and
B(z,) = y,. Then x, — xo and y, — yo as n— o0, where a(zo) = Xo and B(zo)
= y,. For an arbitrary sequence t,€ H such that a(t,) = xo, B(t,) = x,, and
we have z,°t, —zo'l;, =20 as n— . Since z,-t,e H,,, we have

b=l

ZOEH.\'O'
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